Dec 1: Winter Bootcamp Application Deadline. Apply Now In Just 10 Mins

Made at Metis: Two Music Lovers Build Neural Networks

By Emily Wilson • November 20, 2017

This post features two final projects created by recent graduates of our data science bootcamp. Take a look at what's possible in just 12 weeks.

Susan Fung, Ph.D.
Metis Graduate

When recent graduate Susan Fung says that Justin Bieber and Neil Young helped her learn about neural networks, she means it. She wanted to explore neural networks for her final bootcamp project, and as a music fan/neuroscientist, she thought to herself, what better way to do so than by training a neural network using Justin Bieber and Neil Young lyrics? 

"As a neuroscientist, it was too good an opportunity to pass up," she wrote. "What I wanted to do was generate new lyrics based on an artist's style. So at the highest level, train a neural network (NN) on a corpus of Artist X's songs, plug in a seed phrase, receive new text." 

Curious how she got the job done? Read about the entire process on her blog here. She writes about the tools and methods she used throughout, the technical process, and the results, including notes about future work. 
_____

Matt Murray 

Metis Graduate 

For his final project, graduate Matt Murray created a song recommendation engine with deep learning using Juno Download, a digital download website predominantly used by DJs that has a huge back catalog of tracks for sale. On his blog, Matt writes, "It’s a great music resource and they provide a generous 2-minute sample MP3 file for each song they have for sale. The only problem is…it’s really hard to find music on the site that isn’t a new release or currently top of the sales charts."

While it makes sense that newer music generates the most revenue, Murray's curiosity led him to wonder about the other 99% of musical content on the site. It was hard to find – so how could it be made easier? He felt that the site was missing a content-based "you might also like"-type recommender.

So he started downloading songs and converting them into spectrograms. After that, he trained a CNN (convolutional neural network) on the image data. "I needed to teach it to recognize what the different types of music ‘looked’ like in the spectrogram images, so I used the genre labels and trained it to identify the music genre from the images," he wrote. 

And that's just the start. Visit his blog to read a detailed post on his project. 
_____

Want to learn more about the data science bootcamp? Check it out!


Similar Posts

alumni
From Analyst to Data Scientist, Grad Finds Her Way Via the Bootcamp

By Emily Wilson • July 02, 2020

This is Vickie Chan’s second time working at Fitch Ratings, one of the largest credit rating agencies in the United States. The first time exposed her to data science; now, she is a Data Scientist. Read how the bootcamp helped her make the transition.

alumni
Bootcamp Grad Returns to Online Security Field, Making Impact with New Skills

By Emily Wilson • July 20, 2020

For much of his career, Leon Rosenstein’s primary working goal has been to stay one step ahead of those seeking to do digital harm. Read how his time in the bootcamp helped him expand and evolve his career trajectory, fuzing his interests in data science and online security.

alumni
Grad Takes On Data Science with a Focus on Collaboration

By Emily Wilson • September 02, 2020

In a roundabout way, in part via experimental New York theater, bootcamp graduate Thomas Kavanagh made his way to data science. In this post, read his story and find out what he's up to now as a Data Scientist at Alkymi.