NEW Python for Beginners Course Starts July 27! View Course

Sr. Data Scientist Roundup: Blogs on Deep Learning Breakthroughs, Object-Oriented Programming, & More

By Emily Wilson • February 08, 2018

When our Sr. Data Scientists aren't teaching the intensive, 12-week bootcamps, they're working on a variety of other projects. This monthly blog series tracks and discusses some of their recent activities and accomplishments. 

In Sr. Data Scientist Seth Weidman's article, 4 Deep Learning Breakthroughs Business Leaders Should Understand, he asks a crucial question. "It’s a given that artificial intelligence will change many things in our world in 2018," he writes in Venture Beat, "but with new developments arising at a rapid pace, how can business leaders keep up with the latest AI to improve their performance?" 

After providing a brief background on the technology itself, he dives into the breakthroughs, ordering them from most immediately applicable to most cutting-edge (and applicable down the line). Read the article in full here to see where you fall on the deep learning for business knowledge spectrum. 


If you haven't yet visited Sr. Data Scientist David Ziganto's blog, Standard Deviations, do yourself a favor and get over there now! It's routinely updated with content for everyone – from the beginner to the intermediate and advanced data scientists of the world. Most recently, he wrote a post called Understanding Object-Oriented Programming Through Machine Learning, which he starts by talking about an "inexplicable eureka moment" that helped him understand object-oriented programming (OOP).

But his eureka moment took too long to get to, according to him, so he wrote this post to help others on their path toward understanding. In his thorough post, he explains the basics of object-oriented programming through the lens of his favorite subject - machine learning. Read and learn here

In his first ever gig as a data scientist, now Metis Sr. Data Scientist Andrew Blevins worked at IMVU, where he was tasked with building a random forest model to prevent credit card chargebacks. "The interesting part of the project was evaluating the cost of a false positive vs. a false negative. In this case a false positive, declaring someone is a fraudster when they are actually a good customer, cost us the value of the transaction," he writes. Read more in his post, Beware of False Positive Accumulation.

_____

What were Metis Sr. Data Scientists up to last month? See here


Similar Posts

data science
Misleading Graphs: Manipulating the Y-Axis

By Roberto Reif • April 06, 2020

One of the most commonly used charts for data visualization is the bar chart. But too often, the starting value of the y-axis is intentionally modified to skew our interpretation of the chart and the data. In this post, see examples and learn how to readily identify this issue.

data science
BootcampRankings.com Offers Comprehensive Guide to Metis Online Bootcamp & Prep Courses

By Metis • April 13, 2020

With the goal of helping readers "get a handle on what to expect in a Metis online bootcamp" and to provide "facts that let you make an informed decision about your future," Bootcamp Rankings recently published a comprehensive guide to our course offerings, detailing both the immersive Data Science Bootcamp and part-time Bootcamp Prep Courses.

data science
Introducing Our New Bootcamp Prep Course: Python for Beginners

By Metis • June 24, 2020

We know the importance of professional development, especially when roles and careers are continuously evolving. Our team is always looking for ways to deliver new courses that students can use to advance in data science. We’re excited to announce our latest bootcamp prep course: Python for Beginners! Learn more here.