August 12: Free Corporate Data Literacy Training Register Now

Q&A with Greg Ryslik, Head of Data Science & Analytics at Faraday Future

By Emily Wilson • January 30, 2017



"One of the most exciting things about being a data scientist right now is that you get to see this progression. You get to see how a field evolved from its fairly early stages, all the way through to the major powerhouses within the tech world," said Greg Ryslik, instructor and designer of the upcoming Metis evening course, Statistical Foundations for Data Science and Machine Learning

We sat down with Greg to discuss his personal journey into data science and to find out his reasons for developing this particular course. 

Greg completed an undergraduate degree at Rutgers University, then went on to get his Master's in Statistics from Columbia, followed by a Ph.D. in biostatistics at Yale. His impressive resume includes time at Genentech, a major biotech company, where he did cancer biology, and Tesla Motors, where he led the data science analytics team within the service organization. He's currently the Head of Data Science and Analytics at Faraday Future.

He developed this course based on a deep understanding of how vast data science is and will continue to become. But no matter the scale, at the root of it all will be the same thing – a solid understanding of statistics and mathematics. 

"Data science is a very broad field. There's a lot of automation possible in machine learning, AI, that are related algorithms, but the fact of the matter is all these algorithms rely on complex mathematics and statistics," he noted. 

"While you might be able to build and deploy a basic machine learner and use it as a black box piece of software, to really understand what it's doing and to be able to optimize it for the task at hand – [along with] be able to use it to its full extent – you need a fundamental understanding of how the algorithm works, why it works, and [an understanding of] the theoretical underpinnings that make such a model go," he continued. "Having a strong knowledge of statistical mathematics...will help enable the person, not only to deploy a model, but to really optimize it and get the most impact out of it."

Watch the full interview above, and learn more about the course here. It runs from February 21st to April 13th on Monday and Wednesday evenings from 6:30 - 9:30pm. 


Similar Posts

interviews
Course Report Interview: Why Student Chose Part-Time Python Course Before Bootcamp

By Metis • August 07, 2018

In an interview with Course Report, current Metis bootcamp student Carolina Gonzalez discussed her decision to take the Metis Beginner Python & Math for Data Science part-time course before applying to the full-time immersive bootcamp.

interviews
Why Take a SQL Fundamentals Course? (Isn’t it an Old Language from the 70s?)

By Emily Wilson • October 04, 2018

Yes, SQL is an old language developed in the 70’s. But many great and lasting technological advances came about in that same decade. For this post, we sat down with Jonathan Balaban, a Metis Sr. Data Scientist who helped develop our Live Online SQL Fundamentals part-time course. He discusses how he and others on the team came to develop this course based on bootcamp graduate feedback, why SQL is important to know, and why it’s likely to continue standing the test of time.

data science interviews
As Bootcamp Deadline Approaches, Sr. Data Scientist Discusses Value of Immersive Learning

By Emily Wilson • February 26, 2018

As we approach another Final Application Deadline (Monday, March 5th!) for Data Science Bootcamps in Seattle, San Francisco, Chicago, and New York City, we sat down with Metis Sr. Data Scientist Jonathan Balaban to ask him about the value of the 12-week program. In this Q&A, he talks about his professional background, why he wishes data science bootcamps had been around when he was learning and pursuing a career, and what students will get out of their time at Metis.