Aug 20: Ask Bootcamp Alumni Your Questions Live! Register Now

Made at Metis: Two Student Projects Focused on Natural Disaster Relief

By Emily Wilson • October 27, 2017

This post features two final projects created by recent graduates of our data science bootcamp. Take a look at what's possible in just 12 weeks. 

_____

Emily Miller
Metis Graduate
Data Scientist, Bill & Melinda Gates Foundation 

Recent news has been dominated by coverage of a wide range of troubling natural disasters, coupled with both praise and criticism for the various responses to all the damage and suffering. It's timely then, that recent Metis graduate Emily Miller's final project, Targeting Disaster Relief from Space, focused on how data science can improve response accuracy in the event of a natural disaster. 

To accomplish her project goal, she used a dataset on Typhoon Haiyan, which occurred in the Philippines in 2013, focusing on the importance of understanding which specific areas suffer the most damage after a storm in order to prioritize relief efforts. The system used now often relies on volunteers inputting information into a map that compares satellite imagery before and after a given disaster. This is time intensive and not always accurate. 

Of her project, she writes, "My goal was to create a model that could more quickly and more accurately identify the hardest hit areas in order to better target disaster relief. Using satellite imagery before and after Typhoon Haiyan in the Philippines, I built a neural network to detect damaged buildings. Using the predictions from the model, I then created density maps of damage, illustrating priority areas for relief efforts." 

So how'd the project go? What were the outcomes? How can the results be applied to real life situations? Read all about it on her blog here

_____

Daniel Licht 
Metis Graduate 

Recent graduate Daniel Licht also did his final project on a topic related to natural disaster relief. He focused on Flood Water Detection, specifically looking into the flooding that happened in Houston as a result of Hurricane Harvey. 

His goal was to build a model that, once trained, could quickly examine satellite imagery of an area, and create a 'mask' to label each pixel as either flooded or not. In a blog post about the project, he noted that in order to be useful, the model would need to be able to predict over a wide area so it could generate the type of large-scale flood extent maps that would be useful to disaster response or recovery efforts.  

Did it work? Visit Daniel's blog here to find out more about his process and results. You can also see his project slides here
_____

Want to learn more about the data science bootcamp? Check it out!


Similar Posts

alumni
Following His Own Beat: Bootcamp Grad Takes Indirect Path from Music to Data Science

By Emily Wilson • August 11, 2020

Years before attending the bootcamp and switching to a career in data science, Metis graduate Sami Ahmed was focused on music. He studied film scoring and music business in college and worked as a musician, mostly composing for commercial media. Read how (and why) he made the transition to data science.

alumni
Course Report Features Metis Live Online Bootcamp Graduate

By Metis • May 21, 2020

In a Q&A session with Course Report, Metis Live Online Bootcamp graduate Anupama Garla shares her experience with the online classroom and learning style of the bootcamp, her advice for other career-changers, and her plans to innovate the world of architecture now as a data scientist.

alumni
Made at Metis: Street Art to Fine Art; Building a Recommendation System

By Metis • May 26, 2020

This post features two projects from recent graduates of our data science bootcamp. Take a look at what's possible to create in just 12 weeks, including a project to leverage a user’s existing street art preferences to recommend visually-similar fine art and a project to develop a collaborative filtering recommendation system using sales transaction data.