Beginner Python & Math for Data Science Starts Monday! Enroll Now

Made at Metis: Restaurant Recommendations & a What-to-Watch Guide

By Emily Wilson • December 21, 2018

This post features two final projects from recent graduates of our data science bootcamp. Take a look at what's possible to create in just 12 weeks.
__________

To go out or to stay in, that is the question. If you're in need of an answer to this common conundrum, here are two bootcamp final projects that can help. For example, if you're leaning toward going out and have food on your mind, Iris Borkovsky's restaurant recommender can help you choose a delicious and well-reviewed dining spot nearby. Or if you think you'd rather stay in, let Benjamin Sturm's movie recommender helps you make the next tough decision you'll almost certainly run into – with so many choices, what should you stream? 

Photo by Jakub Kapusnak on Unsplash


Chef's Special: Restaurant Recommender 
Iris Borkovsky, Analyst at Instacart

Recent Metis graduate Iris Borkovsky has an "interest in all things food" and wanted to use that as inspiration for her final bootcamp project. Fusing that with her fascination with the inner workings of recommendation systems, she created Chef's Special, a recommender app that helps users narrow down already-reviewed restaurants.  

"It was...a fitting option since many restaurants have text reviews. In the past, I have used natural language processing to analyze product reviews from Amazon and I wanted to bring it into the current project as well," she wrote in a post detailing the project.

For more information on how she approached the project and how it all turned out, read her post and scroll through her project slides.

What Should We Watch Tonight? A Movie Recommender System
Benjamin Sturm, Data Science Consultant

Netflix and other streaming apps are giving people what's sometimes referred to as "choice paralysis" – the feeling when you open an app and scroll and watch trailers but you can't decide what on earth to watch because the options are so far and wide. Recent graduate Benjamin Strum created a movie recommender with that particular challenge in mind. 

"I built a movie recommender based on the idea that people with similar tastes as ours may also like similar movies," he wrote in a post about the project. "This is known as a collaborative filtering based approach to recommendation. The data source I used to build my recommender is the MovieLens 20 Million Dataset, which consists of 20 million ratings of movies. Because of the large size of this dataset, there were some challenges to build my recommender system in a computationally efficient approach."

What were those challenges, and how did the project turn out? Learn more by reading Strum's post and checking out his project slides.

___________

See more examples of Metis student projects here


Similar Posts

alumni
How the Bootcamp Prepared an Academic for Data Science Consulting

By Emily Wilson • December 18, 2018

Metis graduate Summer Rankin is currently working on her favorite project to date as a Lead Data Scientist for the consulting firm Booz Allen Hamilton. Read about the project here, along with details on how the bootcamp prepared her for data science consulting work.

alumni
The Value of an “Unstructured Mathematical Mind” in the World of Startup Data Science

By Emily Wilson • April 07, 2019

“Learn, viciously.” That's the advice Metis graduate Leon Johnson gives to those interested in the bootcamp. And he's no stranger to following his own advice when dedicated to professional and academic pursuits. In this post, read his story, which involves a Math degree, being commissioned into the Air Force, a master's degree, the bootcamp, and his current role as Data Scientist.

alumni
Metis Bootcamp Graduate Propels Digital Efforts at The New York Times

By Emily Wilson • February 07, 2019

News media has been through a lot of change during the past decade, especially in terms of its forced and jagged transition to digital production. This shift has come with the struggle to get readers to pay for digital subscriptions when free news online is often available with a click. Metis grad Kai-Ray Wang works to boost digital subscriptions at The New York Times as an Analytics Manager on the Consumer Acquisition team. Read his story here.