Free FIU Data Science One Hour at Bootcamp: Intro Naive Bayes workshop -  Register Here

Made at Metis: Recommendation Systems for Making Meals + Choosing Beer

By Emily Wilson • July 08, 2019

This post features two final projects from recent graduates of our data science bootcamp. Take a look at what's possible to create in just 12 weeks.

Produce2Recipe: What Should I Cook Tonight? 
Jhonsen Djajamuliadi, Metis Bootcamp Grad + Data Science Teaching Assistant

After trying out a couple existing recipe recommendation apps, Jhonsen Djajamuliadi thought to himself, “Wouldn’t it be nice to use my phone to take photos of stuff in my refrigerator, then get personalized recipes from them?”

For his final project at Metis, he decided to go for it, creating a photo-based recipe recommendation app called Produce2Recipe. Of the project, he wrote: Creating a functional product within 3 weeks was not an easy task, as it required some engineering of different datasets. For instance, I had to collect and manage 2 types of datasets (i.e., images and texts), and I had to pre-process them separately. I also had to build an image classifier that is robust enough, to recognize vegetable photos taken using my phone camera. Then, the image classifier had to be fed into a document of recipes (i.e., corpus) which I wanted to apply natural language processing (NLP) to." 

And there was much more to the process, too. Read about it here.

What to Drink Next? A Simple Beer Recommendation System Using Collaborative Filtering
Medford Xie, Metis Bootcamp Graduate

As a self-proclaimed beer enthusiast, Medford Xie routinely found himself looking for new brews to try – but he dreaded the possibility of disappointment once actually experiencing the first sips. This often led to purchase-paralysis. 

"If you ever found yourself staring at a wall of beers at your local supermarket, contemplating for over 10 minutes, scouring the Internet on your phone looking up obscure beer names for reviews, you are not alone...I often spend too much time looking up a particular beer over several websites to find some kind of reassurance that I’m making a good choice," he wrote. 

For his final project at Metis, he set out " to utilize machine learning and readily available data to create a beer recommendation engine that can curate a customized list of recommendations in milliseconds." 

How did he do it? Read more about the project on his blog


See more examples of Metis student projects here

Similar Posts

data science
Learn Machine Learning in 6 Months

By Zachariah Miller • May 24, 2021

I came across a question on Quora that boiled down to: "How can I learn machine learning in six months?" I started to write up a short answer, but it quickly snowballed into a huge discussion of the pedagogical approach I used and how I made the transition from physics nerd to physics-nerd-with-machine-learning-in-his-toolbelt to data scientist. Here's a roadmap highlighting major points along the way.

data science
Python Guide: Tutorial For Beginners

By Adam Wearne • July 28, 2021

Welcome to a brief introduction to Python. In this article, we'll provide an overview of the Python language, some of its many use cases, how to install Python on your computer, and how to use Python.

data science
A Virtual Classroom Tour with Course Report

By Carlos Russo • December 16, 2020

During a recent webinar with the Course Report team, Roberto Reif walked the audience through a virtual classroom tour of our new data science & analytics bootcamps.