FIU Data Science Bootcamp Application Deadline is Oct. 3 - Apply Now

Made at Metis: Clustering NBA Playstyles Using Machine Learning; Automatic Pricing on Etsy

By Emily Wilson • November 04, 2019

This post features two projects from recent graduates of our data science bootcamp. Take a look at what's possible to create in just 12 weeks.

Clustering NBA Playstyles Using Machine Learning
James Fan, Metis Bootcamp Graduate

Metis graduate James Fan loves everything about basketball, so it made perfect sense for him to fuze that passion with data science for his Project #4 (of 5) during the bootcamp. Based on one particular blockbuster trade that happened over the summer (Kevin Durant to the Nets and D'Angelo Russell to the Warriors), he wanted to answer the question: Can we use machine learning to place NBA players into categories to predict how a player fits in on a given team?

In a blog post about the project, he explained further: "The goal of the project is to determine the types of players and their roles based on their activity or the space they use. (See full list of these features within the post.) Stats such as points, rebounds, assists, steals, blocks, etc. were NOT included as features as they are dependent on data like minutes played (also not included) or number of shots. Including stats like points, rebounds and assists allows for the possibility for the results to be largely based on those features, which is not the goal." 

Want to read more about this project? Get much more detail here.

Automatic Pricing for Etsy Sellers
Asmita Kulkarni, Metis Bootcamp Graduate

As some readers will already know, Etsy is an online marketplace where creators sell millions of handmade goods. For her final project, bootcamp graduate Asmita Kulkarni was interested in the idea that "many of these sellers are new to the website and may not be aware of the market or their competitors and pricing techniques for their products," she wrote in a blog post about the project

With that in mind, she set out to use machine learning to create a tool that provides price estimates on sellers’ products.

"I want to provide a price estimate to the sellers whenever they upload a new product to their shop. To do so, first, I want to find “similar” products (using k-prototypes algorithm for clustering products together). Then, I want to use this “cluster” label as a feature, along with other attributes, in a Linear Regression algorithm to predict the price of the item," she further explains in her post.

Read it in full here to get far more detail on how it all turned out and how she got there. 


See more examples of Metis student projects here

Similar Posts

data science
Made at Metis: Predicting Stock Performance & AI-Generated Guided Meditations

By Emily Wilson • July 27, 2020

This post features two projects from recent graduates of our data science bootcamp. Take a look at what's possible to create in just 12 weeks.

data science
Misleading Graphs: Manipulating the Y-Axis

By Roberto Reif • April 06, 2020

One of the most commonly used charts for data visualization is the bar chart. But too often, the starting value of the y-axis is intentionally modified to skew our interpretation of the chart and the data. In this post, see examples and learn how to readily identify this issue.

data science
Learn Machine Learning in 6 Months

By Zachariah Miller • May 24, 2021

I came across a question on Quora that boiled down to: "How can I learn machine learning in six months?" I started to write up a short answer, but it quickly snowballed into a huge discussion of the pedagogical approach I used and how I made the transition from physics nerd to physics-nerd-with-machine-learning-in-his-toolbelt to data scientist. Here's a roadmap highlighting major points along the way.