Which Bootcamp is Right for Your Career Goals? Explore Programs

Demystifying Data Science Talk Recap: Atif Kureishy on Applying AI to Understand Customer Behaviors

By Emily Wilson • April 23, 2020

This is the 7th installment in an ongoing blog series to recap the talks given on Day 2 of our 2019 Demystifying Data Science live online conference. The content presented on Day 2 was designed for Business Leaders, Managers, and Practitioners. 

During his talk, Atif Kureishy (Global Vice President of AI & Deep Learning Products at Teradata) discusses how to merge offline and online activity in order to better serve customers while staying cost-efficient in the retail space. 

While there has been significant investment in artificial intelligence across industries, there's still room for growth from the "observational" perspective, according to Kureishy. To explain what that means, he starts by showcasing how he and his team at Teradata think about AI. 

This approach allows the company to "drive better answers" that benefit retail operations across the board. How so? It all starts with data, which Kureishy describes as the "underpinning of AI." He breaks down data in the following three ways: 

1) Transactional: data that’s highly curated and has been driving value in the corporate environment for around 40 years. 

2) Interactional: human-generated data derived from mobile and social media, which has developed in the last 20 years. 

3) Observational: over the coming decades, companies will be focused on this data, which comes from imagery, video, and more and allows for the observation of human behavior.

Where can you see examples of observational data today?

"It's everywhere," according to Kureishy. You can find it in security, manufacturing, drones, semi-autonomous cars, and so forth. 

"We now have all of this rich observational data available to us in the enterprise and it's waiting to be analyzed," he adds. 

In the following, you see a screenshot of a video that Kureishy shows to demonstrate how observational data is being collected and analyzed in the retail sector. Customers are categorized as they interact with the products and store layout, and at the bottom of the image, moving from "walking" to "engaging" in real-time.

As Kureishy explains in detail, it's important to note that faces are blurred and no biometrics are used in these processes. 

"We have to be fixated on the privacy, ethics, and compliance piece," he said. "Controls put in place and thought and privacy and the ethical aspects of all of this need to be first-class considerations."

These privacy-related concerns are the base of Teradata's observational data work

In the end, this data results in time-series data, according to Kureishy.

"For each time stamp on every camera, we see a subject, and we can locate them in an X and Y coordinate," he said. In effect, we can see what it looks like for Person A to move from "walking" to "engagement" and have a time-series record of it. 

And while that's "interesting," according to Kureishy, it's not helpful unless it can be put into context.

This is where the offline and online worlds meet, and where you can start answering questions like "How did employee or associate engagement influence conversion in the store?" or "How did a specific promotion change customer behavior in the store?"

"All of that unlocks given that we can now process this observational data," says Kureishy. And this can start influencing decision making for the store. 

So how can retailers take steps to improve customer satisfaction based on this data? How can they improve the cost to serve?

To get robust answers, watch his full presentation, including a lively Q&A discussion. Register for free here and receive a link via email for access to this and all other Demystifying Data Science talks.

Similar Posts

business resource
Scoping a Data Science Projects

By Damien Martin • July 07, 2021

In February, Metis Sr. Data Scientist Damien Martin wrote a post on how to foster a data literate and empowered workforce, which allows your data science team to then work on projects rather than ad hoc analyses. In this post, he explains how to carefully scope those data science projects for maximum impact and benefit.

business resource
Javed Ahmed Discusses Ethical Risk and Bias at Ai X West 2020

By Shaunna Randolph • October 28, 2020

Ai X West, part of Open Data Science Conference (ODSC) West will be held in a virtual format this year on October 28, and one of our Sr. Data Scientists, Javed Ahmed is all set to present. Here, read what he'll cover and how you can register to watch him live.

business resource
VIDEO: An AI4 Panel Discussion on The State of AI in Banking

By Carlos Russo • September 23, 2020

Metis Sr. Data Scientist Javed Ahmed recently took part in a panel discussion about The State of AI in Banking during an online Ai4 event. He and the other panelists talked about upskilling, challenges related to COVID-19, and more. Watch the recorded panel discussion here.