FIU Data Science Bootcamp Application Deadline is Oct. 3 - Apply Now

Demystifying Data Science Talk Recap: Atif Kureishy on Applying AI to Understand Customer Behaviors

By Emily Wilson • April 23, 2020

This is the 7th installment in an ongoing blog series to recap the talks given on Day 2 of our 2019 Demystifying Data Science live online conference. The content presented on Day 2 was designed for Business Leaders, Managers, and Practitioners. 

During his talk, Atif Kureishy (Global Vice President of AI & Deep Learning Products at Teradata) discusses how to merge offline and online activity in order to better serve customers while staying cost-efficient in the retail space. 

While there has been significant investment in artificial intelligence across industries, there's still room for growth from the "observational" perspective, according to Kureishy. To explain what that means, he starts by showcasing how he and his team at Teradata think about AI. 

This approach allows the company to "drive better answers" that benefit retail operations across the board. How so? It all starts with data, which Kureishy describes as the "underpinning of AI." He breaks down data in the following three ways: 

1) Transactional: data that’s highly curated and has been driving value in the corporate environment for around 40 years. 

2) Interactional: human-generated data derived from mobile and social media, which has developed in the last 20 years. 

3) Observational: over the coming decades, companies will be focused on this data, which comes from imagery, video, and more and allows for the observation of human behavior.

Where can you see examples of observational data today?

"It's everywhere," according to Kureishy. You can find it in security, manufacturing, drones, semi-autonomous cars, and so forth. 

"We now have all of this rich observational data available to us in the enterprise and it's waiting to be analyzed," he adds. 

In the following, you see a screenshot of a video that Kureishy shows to demonstrate how observational data is being collected and analyzed in the retail sector. Customers are categorized as they interact with the products and store layout, and at the bottom of the image, moving from "walking" to "engaging" in real-time.

As Kureishy explains in detail, it's important to note that faces are blurred and no biometrics are used in these processes. 

"We have to be fixated on the privacy, ethics, and compliance piece," he said. "Controls put in place and thought and privacy and the ethical aspects of all of this need to be first-class considerations."

These privacy-related concerns are the base of Teradata's observational data work

In the end, this data results in time-series data, according to Kureishy.

"For each time stamp on every camera, we see a subject, and we can locate them in an X and Y coordinate," he said. In effect, we can see what it looks like for Person A to move from "walking" to "engagement" and have a time-series record of it. 

And while that's "interesting," according to Kureishy, it's not helpful unless it can be put into context.

This is where the offline and online worlds meet, and where you can start answering questions like "How did employee or associate engagement influence conversion in the store?" or "How did a specific promotion change customer behavior in the store?"

"All of that unlocks given that we can now process this observational data," says Kureishy. And this can start influencing decision making for the store. 

So how can retailers take steps to improve customer satisfaction based on this data? How can they improve the cost to serve?

To get robust answers, watch his full presentation, including a lively Q&A discussion. Register for free here and receive a link via email for access to this and all other Demystifying Data Science talks.

Similar Posts

business resource
How to Build a Data Science Portfolio: The 5 Phases

By Carlos Russo • April 22, 2021

Effective corporate data science portfolios rely on a solid foundation built by identifying challenges, pitching ideas, scoping out pitches, and planning out paths that evolve into strategy success.

business resource
VIDEO: Recorded Talk - How Machine Learning is Changing Finance with Javed Ahmed

By Carlos Russo • August 20, 2020

Watch a recording of Metis Sr. Data Scientist Javed Ahmed's talk on How Machine Learning is Changing Finance at the new Wake Forest University Financial Services and Fintech Hub.

business resource
VIDEO: Building a Successful Data-Driven Culture to Boost Business Value

By Carlos Russo • March 16, 2021

Metis President and Co-Founder Jason Moss recently moderated a panel discussion on Building a Successful Data-Driven Culture to Boost Business Value. Watch the recording here.